CS 267 Applications of Parallel Computers

Lecture 10:

Sources of Parallelism and Locality (Part 2)

David H. Bailey

based on previous lecture notes by Jim Demmel and Dave Culler

http://www.nersc.gov/~dhbailey/cs267

Recap of last lecture

- ° Simulation models
- ° A model problem: sharks and fish
- ° Discrete event systems
- ° Particle systems
- Lumped systems ordinary differential equations (ODEs)

Outline

- ° Continuation of (ODEs)
- ° Partial Differential Equations (PDEs)

Ordinary Differential Equations ODEs

Solving ODEs

- Explicit methods to compute solution(t)
 - Example: Euler's method.
 - Simple algorithm: sparse matrix vector multiply.
 - May need to take very small time steps, especially if system is stiff (i.e. can change rapidly).
- Implicit methods to compute solution(t)
 - Example: Backward Euler's Method.
 - Larger timesteps, especially for stiff problems.
 - More difficult algorithm: solve a sparse linear system.
- Computing modes of vibration
 - Finding eigenvalues and eigenvectors.
 - Example: do resonant modes of building match earthquakes?
- All these reduce to sparse matrix problems
 - Explicit: sparse matrix-vector multiplication.
 - Implicit: solve a sparse linear system
 - direct solvers (Gaussian elimination).
 - iterative solvers (use sparse matrix-vector multiplication).
 - Eigenvalue/vector algorithms may also be explicit or implicit.

Solving ODEs - Details

- Assume ODE is x'(t) = f(x) = A*x, where A is a sparse matrix
 - Try to compute x(i*dt) = x[i] at i=0,1,2,...
 - Approximate x'(i*dt) by (x[i+1] x[i])/dt
- ° Euler's method:
 - Approximate x'(t)=A*x by (x[i+1] x[i])/dt = A*x[i] and solve for x[i+1].
 - x[i+1] = (I+dt*A)*x[i], i.e. sparse matrix-vector multiplication.
- ° Backward Euler's method:
 - Approximate x'(t)=A*x by (x[i+1] x[i])/dt = A*x[i+1] and solve for x[i+1].
 - (I dt*A)*x[i+21] = x[i], i.e. we need to solve a sparse linear system of equations.
- Modes of vibration
 - Seek solution of x"(t) = A*x of form x(t) = sin(f*t)*x0, where x0 is a constant vector.
 - Plug in to get -f *x0 = A*x0, so that -f is an eigenvalue and x0 is an eigenvector of A.
 - Solution schemes reduce either to sparse-matrix multiplication, or solving sparse linear systems.

Parallelism in Sparse Matrix-vector multiplication

- $^{\circ}$ y = A*x, where A is sparse and n x n
- Questions
 - which processors store
 - y[i], x[i], and A[i,j]
 - which processors compute
 - y[i] = sum (from 1 to n) A[i,j] * x[j]
 = (row i of A) * x ... a sparse dot product

Partitioning

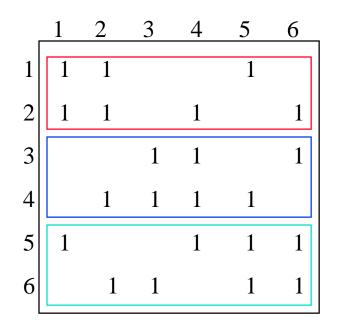
- Partition index set {1,...,n} = N1 u N2 u ... u Np.
- For all i in Nk, Processor k stores y[i], x[i], and row i of A
- For all i in Nk, Processor k computes y[i] = (row i of A) * x
 - "owner computes" rule: Processor k compute the y[i]s it owns.

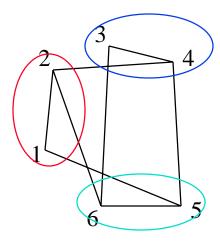
Goals of partitioning

- balance load (how is load measured?).
- balance storage (how much does each processor store?).
- minimize communication (how much is communicated?).

Graph Partitioning and Sparse Matrices

Relationship between matrix and graph





- ° A "good" partition of the graph has
 - equal (weighted) number of nodes in each part (load and storage balance).
 - minimum number of edges crossing between (minimize communication).
- Can reorder the rows/columns of the matrix by putting all the nodes in one partition together.

More on Matrix Reordering via Graph Partitioning

- "Ideal" matrix structure for parallelism: (nearly) block diagonal
 - p (number of processors) blocks.
 - few non-zeros outside these blocks, since these require communication.

				P0
				P1
=			*	P2
				P3
				P4

What about implicit methods and eigenproblems?

Direct methods (Gaussian elimination)

- Called LU Decomposition, because we factor A = L*U.
- Future lectures will consider both dense and sparse cases.
- More complicated than sparse-matrix vector multiplication.

Iterative solvers

- Will discuss several of these in future.
 - Jacobi, Successive overrelaxiation (SOR), Conjugate Gradients (CG), Multigrid,...
- Most have sparse-matrix-vector multiplication in kernel.

° Eigenproblems

- Future lectures will discuss dense and sparse cases.
- Also depend on sparse-matrix-vector multiplication, direct methods.

Graph partitioning

Algorithms will be discussed in future lectures.

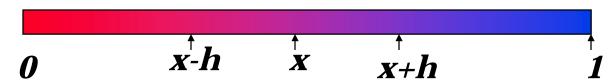
Partial Differential Equations PDEs

Continuous Variables, Continuous Parameters

Examples of such systems include

- ° Heat flow: Temperature(position, time)
- Diffusion: Concentration(position, time)
- Electrostatic or Gravitational Potential: Potential(position)
- Fluid flow: Velocity, Pressure, Density (position, time)
- Quantum mechanics: Wave-function(position,time)
- ° Elasticity: Stress, Strain(position, time)

Example: Deriving the Heat Equation



Consider a simple problem

- ° A bar of uniform material, insulated except at ends
- $^{\circ}$ Let u(x,t) be the temperature at position x at time t
- $^{\circ}$ Heat travels from x-h to x+h at rate proportional to:

$$\frac{d u(x,t)}{dt} = C * \frac{(u(x-h,t)-u(x,t))/h - (u(x,t)-u(x+h,t))/h}{h}$$

 $^{\circ}$ As $h \rightarrow 0$, we get the heat equation:

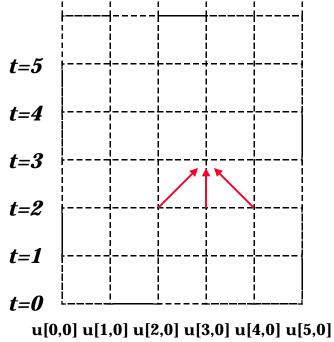
$$\frac{d u(x,t)}{dt} = C * \frac{d^2 u(x,t)}{dx^2}$$

Explicit Solution of the Heat Equation

- ° For simplicity, assume *C=1*
- Discretize both time and position
- ° Use finite differences with u[j,i] as the heat at
 - time t= i*dt (i = 0,1,2,...) and position x = j*h (j=0,1,...,N=1/h)
 - initial conditions on u[j,0]
 - boundary conditions on u[0,i] and u[N,i]
- ° At each timestep i = 0,1,2,...

where $z = dt/h^2$

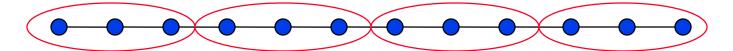
- ° This corresponds to
 - matrix vector multiply (what is matrix?)
 - nearest neighbors on grid



Parallelism in Explicit Method for PDEs

Partitioning the space (x) into p largest chunks

- good load balance (assuming large number of points relative to p)
- minimized communication (only p chunks)



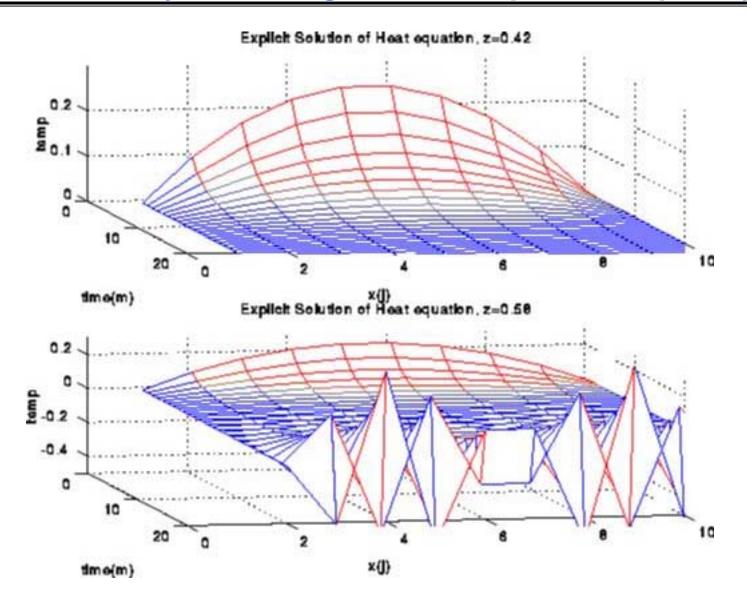
Generalizes to

- multiple dimensions.
- arbitrary graphs (= sparse matrices).

Problem with explicit approach

- numerical instability.
- solution blows up eventually if $z = dt/h^2 > .5$
- need to make the time steps very small when h is small: $dt < .5*h^2$

Instability in solving the heat equation explicitly



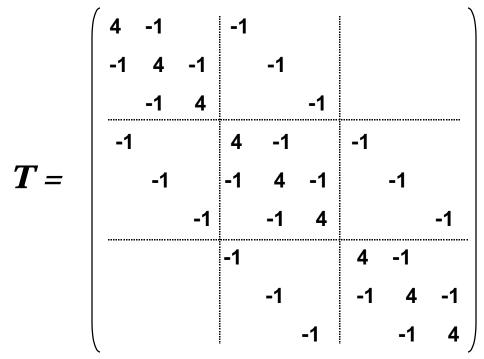
Implicit Solution

- ° As with many (stiff) ODEs, we need to use an implicit method.
- o This turns into solving the following equation: (I + (z/2)*T) * u[:,i+1]= (I - (z/2)*T) *u[:,i]
- $^{\circ}$ Here I is the identity matrix and T is:

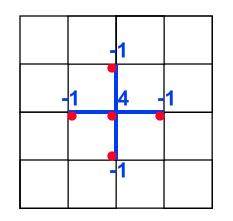
° I.e., essentially solving Poisson's equation in 1D

2D Implicit Method

 $^{\circ}$ Similar to the 1D case, but the matrix T is now



Graph and "stencil"



- ° Multiplying by this matrix (as in the explicit case) is simply nearest neighbor computation on 2D grid.
- ° To solve this system, there are several techniques.

Algorithms for 2D Poisson Equation with N unknowns

Algorithm	Serial	PRAM	Memory	#Procs
° Dense LU	N ³	N	N ²	N ²
° Band LU	N^2	N	N ^{3/2}	N
° Jacobi	N^2	N	N	N
° Explicit Inv.	N^2	log N	N ²	N^2
° Conj.Grad.	N ^{3/2}	N 1/2 *log N	N	N
° RB SOR	N ^{3/2}	N 1/2	N	N
° Sparse LU	N ^{3/2}	N 1/2	N*log N	N
° FFT	N*log N	log N	N	N
° Multigrid	N	log² N	N	N
° Lower bound	N	log N	N	

PRAM is an idealized parallel model with zero cost communication (see next slide for explanation)

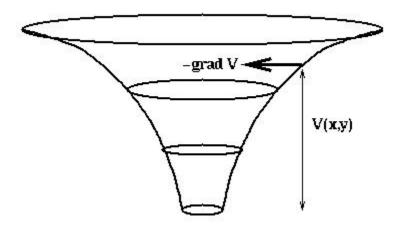
Short explanations of algorithms on previous slide

- ° Sorted in two orders (roughly):
 - · from slowest to fastest on sequential machines.
 - from most general (works on any matrix) to most specialized (works on matrices "like" T).
- Dense LU: Gaussian elimination; works on any N-by-N matrix.
- Band LU: Exploits the fact that T is nonzero only on sqrt(N) diagonals nearest main diagonal.
- Jacobi: Essentially does matrix-vector multiply by T in inner loop of iterative algorithm.
- Explicit Inverse: Assume we want to solve many systems with T, so we can precompute and store inv(T) "for free", and just multiply by it (but still expensive).
- Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits mathematical properties of T that Jacobi does not.
- Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits yet different mathematical properties of T. Used in multigrid schemes.
- LU: Gaussian elimination exploiting particular zero structure of T.
- FFT (fast Fourier transform): Works only on matrices very like T.
- Multigrid: Also works on matrices like T, that come from elliptic PDEs.
- Lower Bound: Serial (time to print answer); parallel (time to combine N inputs).
- Details in class notes and www.cs.berkeley.edu/~demmel/ma221.

Relation of Poisson's Equation to Gravity, Electrostatics

- ° Force on particle at (x,y,z) due to particle at 0 is $-(x,y,z)/r^3$, where $r = sqrt(x^2+y^2+z^2)$
- Force is also gradient of potential V = -1/r= -(d/dx V, d/dy V, d/dz V) = -grad V
- ° V satisfies Poisson's equation (try it!)

Relationship of Potential V and Force -grad V in 2D



Comments on practical meshes

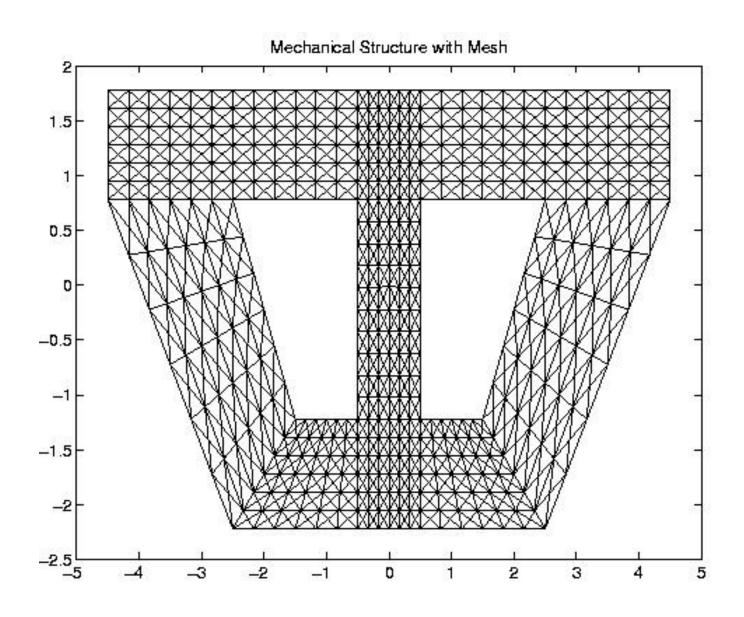
° Regular 1D, 2D, 3D meshes

• Important as building blocks for more complicated meshes.

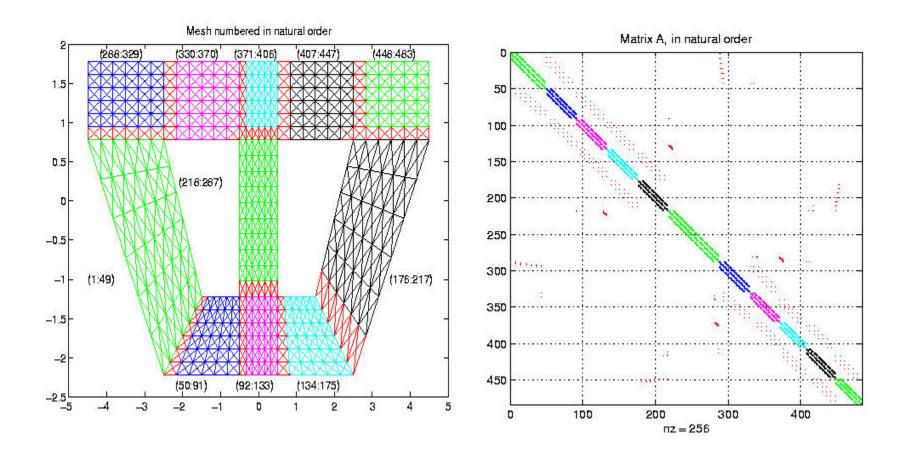
Practical meshes are often irregular

- Composite meshes, consisting of multiple "bent" regular meshes joined at edges.
- Unstructured meshes, with arbitrary mesh points and connectivity.
- Adaptive meshes, which change resolution during solution process to put computational effort where needed.

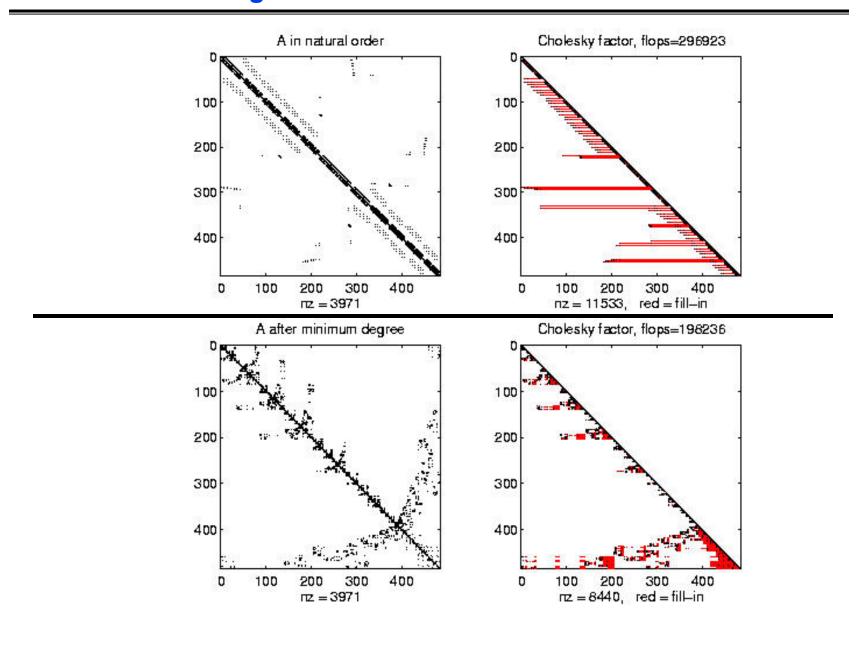
Composite mesh from a mechanical structure



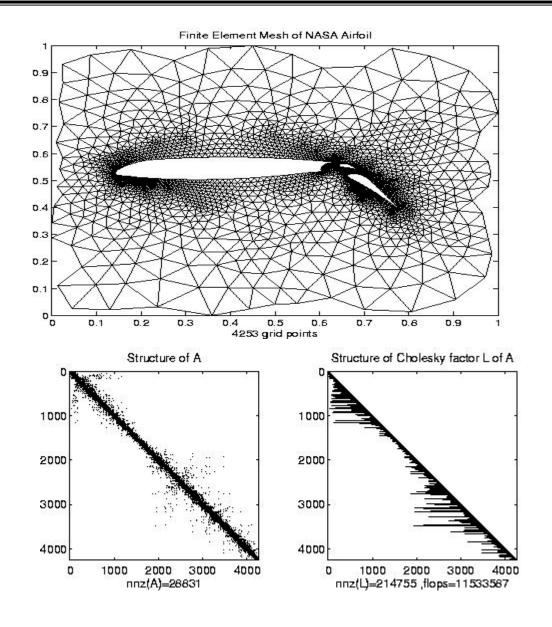
Converting the mesh to a matrix



Effects of Ordering Rows and Columns on Gaussian Elimination



Irregular mesh: NASA Airfoil in 2D (direct solution)



Irregular mesh: Tapered Tube (multigrid)

Example of Prometheus meshes

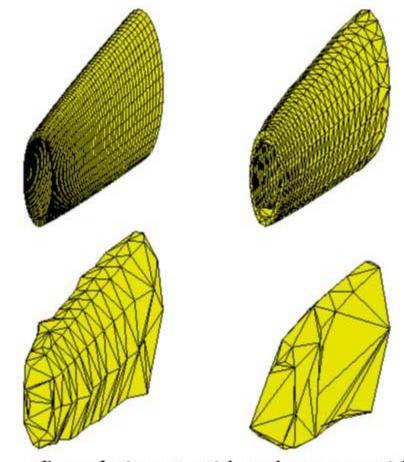
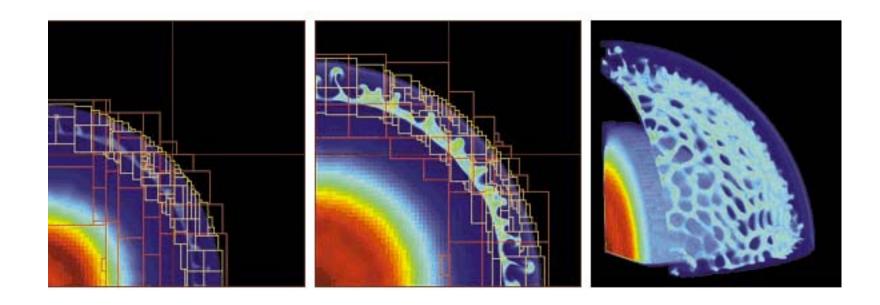


Figure 6 Sample input grid and coarse grids

Adaptive Mesh Refinement (AMR)



- °Adaptive mesh around an explosion.
- °John Bell and Phil Colella at LBL/NERSC.
- °Goal of Titanium is to make these algorithms easier to implement in parallel.

Challenges of irregular meshes (and a few solutions)

° How to generate them in the first place:

• Triangle, a 2D mesh partitioner by Jonathan Shewchuk.

° How to partition them:

ParMetis, a parallel graph partitioner.

° How to design iterative solvers:

- PETSc, a Portable Extensible Toolkit for Scientific Computing.
- Prometheus, a multigrid solver for finite element problems on irregular meshes.
- Titanium, a language to implement Adaptive Mesh Refinement.

° How to design direct solvers:

- SuperLU, parallel sparse Gaussian elimination.
- ° These are challenges to do sequentially, the more so in parallel.